Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 83(2): 269-282, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29328520

RESUMO

OBJECTIVE: Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS: To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS: Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION: Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.


Assuntos
Actinas/genética , Contração Muscular/fisiologia , Debilidade Muscular/genética , Miopatias Congênitas Estruturais/fisiopatologia , Sarcômeros/patologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Sarcômeros/fisiologia , Adulto Jovem
2.
J Med Genet ; 50(6): 383-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23572184

RESUMO

BACKGROUND: Nemaline myopathy-the most common non-dystrophic congenital myopathy-is caused by mutations in thin filament genes, of which the nebulin gene is the most frequently affected one. The nebulin gene codes for the giant sarcomeric protein nebulin, which plays a crucial role in skeletal muscle contractile performance. Muscle weakness is a hallmark feature of nemaline myopathy patients with nebulin mutations, and is caused by changes in contractile protein function, including a lower calcium-sensitivity of force generation. To date no therapy exists to treat muscle weakness in nemaline myopathy. Here, we studied the ability of the novel fast skeletal muscle troponin activator, CK-2066260, to augment force generation at submaximal calcium levels in muscle cells from nemaline myopathy patients with nebulin mutations. METHODS: Contractile protein function was determined in permeabilised muscle cells isolated from frozen patient biopsies. The effect of 5 µM CK-2066260 on force production was assessed. RESULTS: Nebulin protein concentrations were severely reduced in muscle cells from these patients compared to controls, while myofibrillar ultrastructure was largely preserved. Both maximal active tension and the calcium-sensitivity of force generation were lower in patients compared to controls. Importantly, CK-2066260 greatly increased the calcium-sensitivity of force generation-without affecting the cooperativity of activation-in patients to levels that exceed those observed in untreated control muscle. CONCLUSIONS: Fast skeletal troponin activation is a therapeutic mechanism to augment contractile protein function in nemaline myopathy patients with nebulin mutations and with other neuromuscular diseases.


Assuntos
Imidazóis/farmacologia , Proteínas Musculares/genética , Força Muscular/efeitos dos fármacos , Mutação/genética , Miopatias da Nemalina/fisiopatologia , Pirazinas/farmacologia , Troponina/metabolismo , Adulto , Biópsia , Cálcio/metabolismo , Pré-Escolar , Humanos , Imidazóis/administração & dosagem , Lactente , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Miopatias da Nemalina/tratamento farmacológico , Miopatias da Nemalina/genética , Pirazinas/administração & dosagem , Resultado do Tratamento , Troponina/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...